Using Three Dimensional Hydrodynamic Modeling and Fish Swimming Energetics to Assess Culverts as Potential Physical Barriers to Upstream Fish Movement

Matt Blank, Western Transportation Institute

Joel Cahoon, Montana State University

Tom McMahon, Montana State University
Overview of Presentation

- Aquatic barriers
- Factors affecting passage
- Assessment methods
- 3-D hydrodynamic method (and 1-D)
- Comparison to fish movement
- Future research directions
2.5 million aquatic barriers in U.S. by culverts, dams and canals (National Fish Passage Summit, 2006).

Estimated 1.4 million stream-road crossings in U.S. (U.S. Fish and Wildlife, National Fish Passage Program, unpublished data).

1,500 culverts on fish bearing streams within Montana’s National Forests: 47% barriers, 15% passable and 38% unclassified (Williams, 2007).
Physical Factors Influencing Fish Passage

- **High water velocity**
 - excessive turbulence
- **Shallow water depth**
- **Outlet drop**
 - pool depth/leap height ratio
 - jump location
 - air entrainment
- **Debris/sediment blockage**
Fish Locomotion

- Species and size
- Temperature
- Dissolved oxygen
- Motivation
- Gender
- Physical condition
- Disease
- Sexual maturity
Types of Barriers

- Total Barrier
- Partial Barrier
- Temporal Barrier
- No Barrier
Assessment Techniques

<table>
<thead>
<tr>
<th>Direct Approach</th>
<th>Field experiments that measure fish movement directly and compare movement to flow conditions in a structure.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indirect Approach</td>
<td>Approximate movement potential using thresholds, modeling or comparisons between population characteristics measured upstream and downstream of a crossing.</td>
</tr>
</tbody>
</table>

Tagging studies:
- Mark-recapture, PIT tagging or others (e.g. radio telemetry)
- Visual observations
- Video camera

Regional screens:
- Based upon field and laboratory experiments
- Hydraulic modeling
- Comparisons between upstream and downstream fish population characteristics
Assessment Techniques

Direct Approach
Field experiments that measure fish movement directly and compare movement to flow conditions in a structure.

- Tagging studies: mark-recapture, PIT tagging or others (e.g. radio telemetry)
- Visual observations
- Video camera

Indirect Approach
Approximate movement potential using thresholds, modeling or comparisons between population characteristics measured upstream and downstream of a crossing.

- Regional screens based upon field and laboratory experiments
- Hydraulic modeling
- Comparisons between upstream and downstream fish population characteristics

Western Transportation Institute

Montana State University College of Engineering
Upper Clearwater River Basin

Above Seeley Lake outlet
- 143 square miles
- 121 miles of stream
- Assessed 46 culverts
Summary of Results for Sites Where Multiple Methods Were Applied

<table>
<thead>
<tr>
<th>Site Identification</th>
<th>FishXing Results</th>
<th>Direct Passage Results</th>
<th>Upstream vs. Downstream</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adult</td>
<td>Juvenile</td>
<td>Passage Indicator</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>B</td>
<td>-0.36</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>B</td>
<td>0.35</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>P</td>
<td>0.2</td>
</tr>
<tr>
<td>13</td>
<td>B</td>
<td>B</td>
<td>-1</td>
</tr>
<tr>
<td>19</td>
<td>B</td>
<td>B</td>
<td>0.13</td>
</tr>
<tr>
<td>20</td>
<td>B</td>
<td>B</td>
<td>0.03</td>
</tr>
<tr>
<td>23</td>
<td>P</td>
<td>P</td>
<td>-0.56</td>
</tr>
<tr>
<td>27</td>
<td>B</td>
<td>B</td>
<td>-0.19</td>
</tr>
<tr>
<td>28</td>
<td>B</td>
<td>B</td>
<td>-0.54</td>
</tr>
<tr>
<td>33</td>
<td>B</td>
<td>B</td>
<td>-0.85</td>
</tr>
<tr>
<td>35</td>
<td>B</td>
<td>B</td>
<td>-0.69</td>
</tr>
<tr>
<td>43</td>
<td>B</td>
<td>B</td>
<td>-0.22</td>
</tr>
</tbody>
</table>
Development and Testing of 3-D Method – Mulherin Creek

- Concrete Box Culvert
- Length ~ 37 ft
- Width ~ 12 ft
- Slope ~ 1.1%
- Outlet Drop ~ 1.5 ft

Main study culverts
Culverts in companion study
Direct Passage Measurement

- Visual observations
- PIT tagging w/ antennae
- Mark-Recapture
Hydrodynamic Model Development

CFD model development using ANSYS CFX platform.

Boundary Conditions
- Inlet: mass flow rate, turbulence intensity and length scale
- Outlet: static pressure (water depth)
- Culvert sides and floor: no-slip wall boundaries

Initial Conditions
- Inlet: grid of water velocities
- Outlet: water depth
- Velocities: 0 m/s
- VOF: step function
Model Validation

Observed

Predicted

Flow
Model Validation

$\hat{y} = \text{fit}$

$R^2_{mod} = 0.86, R^2_{fit} = 0.93$

$R^2_{mod} = 0.90, R^2_{fit} = 0.95$
Barrier Assessment 1-D

1. \(V_f - V_w = V_{\text{progress}} \)
2. \(\text{Time} = \frac{1}{V_{\text{progress}}} \)
3. If Total Time > 5 seconds, then fail, otherwise pass.

Flow

- 8.20 ft/s
- 8.62 ft/s
- 8.91 ft/s
- 9.02 ft/s
- 9.13 ft/s
- 9.22 ft/s
- 9.31 ft/s
- 9.38 ft/s
- 9.46 ft/s
- 9.53 ft/s
- 9.59 ft/s

Fish Movement
Barrier Assessment (3D)

- Estimate 3-D velocity field.
- Find minimum energy path for each starting point.
- Estimate passage using velocities along each path.
Energy Paths

June 29 Model

Flow
<table>
<thead>
<tr>
<th>Species</th>
<th>Burst Speed</th>
<th>Burst Speed Range</th>
<th>Size Range</th>
<th>Size Range</th>
<th>Time Range</th>
<th>Temperature Range</th>
<th>Source and Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutthroat Trout</td>
<td>4.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bell (1991)</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td></td>
<td>1.86 to 2.26</td>
<td>58 to 67</td>
<td>23 to 26</td>
<td>10 to 15</td>
<td></td>
<td>Paulik and Delacy (1957) as cited in Hoar and Randall, eds. (1978).</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td></td>
<td>5.36 to 8.17</td>
<td>61 to 81</td>
<td>24 to 32</td>
<td>1.5</td>
<td></td>
<td>Weaver (1963) as cited in Hoar and Randall, eds. (1978).</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td></td>
<td>0.3 to 2.5</td>
<td>14.3</td>
<td>5.6</td>
<td>0.08</td>
<td></td>
<td>Webb, as cited in Hoar and Randall, eds. (1978).</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td></td>
<td>0.3 to 1.8</td>
<td>14.3</td>
<td>5.6</td>
<td>0.04</td>
<td></td>
<td>Webb, as cited in Hoar and Randall, eds. (1978).</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td>2.72</td>
<td>0.83</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Jones et al. (1974) as listed in FishXing Swimming Speed table.</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td>5.33</td>
<td>1.62</td>
<td>-</td>
<td>10.3 to 28</td>
<td>4.1 to 11</td>
<td>1 to 20</td>
<td>Bainbridge (1960) as cited in Hunter and Mayor (1986).</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td>2.11**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hunter and Mayor (1986)</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td></td>
<td>3.28</td>
<td>-</td>
<td>61 to 81.3</td>
<td>24 to 32</td>
<td>1.6 to 12.5</td>
<td>Weaver (1963) and Beamish (1978) as cited in Hunter and Mayor (1986).</td>
</tr>
</tbody>
</table>
Four Different Assessments

1. 1-D flow model with Bell (1991) data.

2. 1-D flow model with Hunter and Mayor’s (1986) data.

3. 3-D flow model with Bell (1991) data.

4. 3-D flow model with Hunter and Mayor’s (1986) data.
Comparison of Predictions to Direct Observations

1. 1-D with Bell.
2. 1-D with Hunter and Mayor.
3. 3-D with Bell.
4. 3-D with Hunter and Mayor

• Documented Passage and Failed Attempt

• Documented Passage
Future Research

- Further validate 3-D hydrodynamic modeling for barrier assessment.
- Determine high end (burst) swimming speeds.
- Assessment should be in terms of probabilities, not yes/no.
- Marriage of aquatic ecology and hydraulics.
Acknowledgements

• Western Transportation Institute
• Montana Department of Transportation
• Montana Fish, Wildlife and Parks
• United States Forest Service
Select flow rate of interest.

Model velocity through culvert using ANSYS-CFX.

Export velocity field on plane 0.06 m above culvert bed from ANSYS-CFX to Microsoft Excel.

Calculate energy paths using Microsoft Excel with VBA code.

\[E = \int_{0}^{s} |F| ds \]

\[F = 0.5C_d \rho A_s (V - V_f)^2 \]
Energy Paths