Innovative Approaches for Reducing Freight Transportation Emissions

Andrew Papson, ICF International
TRB Environment and Energy Research Conference
June 9, 2010
Freight emissions impact air quality, health, and climate change
Freight is a significant source of emissions
New technologies to reduce GHG emissions from trucking
Truck GHG emissions are a growing problem

- Trucks emit the majority of freight emissions
 - 70% of freight GHGs
 - 20% of all transportation GHGs

- Truck fuel efficiency (per ton-mile) dropped by 10% from 1990 to 2005.

- New federal fuel economy standards for trucks are coming
Opportunities to reduce truck GHG emissions

- **Current efficiency programs**
 - EPA: SmartWay
 - Rocky Mountain Institute: North American Council for Freight Efficiency
 - DOE SuperTrucks

- **New technical and operational innovations**
 - New vehicle tech: transmission adjustment and throttle controllers
 - New logistics strategies: product design and packaging strategies
Strategy: transmission adjustment and throttle controllers

- New vehicle technologies lead to more efficient operation and less GHGs

- **Transmission adjustments**
 - Adjust shift points for automatic transmissions
 - Keep engine operating at the most efficient RPMs

- **Throttle controllers (governors)**
 - Cap engine power at low & moderate speeds
 - Saves fuel, cuts acceleration from a stop

- **Benefits and challenges**
 - Reduce GHGs 10-15%
 - But... drivers often resist changes that hurt performance
Strategy: logistics, product design and packaging strategies

- **Increase “value density” of freight. $$ per ton**

- **Product design – reduce volume**
 - Concentrated laundry detergent, windshield washer fluid

- **Packaging**
 - Better packaging – less volume needed
 - New pallets reduce weight: plastic, corrugated cardboard

- **Supply chain placement**
 - Bring manufacturing, distribution centers close to customers
 - Examples: Amazon fulfillment warehouses, Netflix DVD centers
 - Shorter trips = fewer GHG emissions, faster delivery
Reducing rail GHG emissions through corridor analysis
Approaches to reducing rail emissions

Standard approaches:
- Locomotive & train based.
- Locomotive technology: greater engine efficiency
- Train and consist technology
 - Aerodynamic fairings
 - Improved bearings & journals
- Driver training, fuel efficiency improvements

Alternative approach: Corridor Analysis
- Examines fuel economy for each route, based on route characteristics and consist type
- Demonstrates great variability in GHG emissions by route and load
- Allows users to choose the best routes for a green supply chain
Fuel economy varies greatly by commodity type and rail corridor properties.
Factors in corridor GHG emissions

- **Route characteristics are summarized by the grade profile and speed profile**
 - **Grade profile: altitude at each point of a route.**
 - Rail grade (slope) at each point
 - Determines fuel used to overcome elevation changes
 - **Speed profile: speed at each point of a route.**
 - Train speed and acceleration at each point
 - Determines air resistance, rolling resistance, and fuel used for acceleration
Example: grade profiles and fuel economy

Route A:
- 362 ton-miles per gallon
- 37 lbs CO$_2$ per 1,000 ton-miles

Route B:
- 498 ton-miles per gallon
- 26 lbs CO$_2$ per 1,000 ton-miles
Rail corridor analysis is an innovative tool for reducing rail freight emissions

Corridor analysis:
- is an innovative modeling approach to determining fuel economy along a rail corridor
- places emphasis on route selection and corridor properties, rather than locomotive technology
- reveals stark differences in fuel economy across different routes
- can inform decisions on choosing the most efficient supply chain

The relevant properties of a corridor can be summed up as grade profile and speed profile, allowing for a streamlined modeling approach
Innovative strategies to reduce emissions on inland waterways
Tugboat are significant sources of emissions along inland waterways

- **Harborcraft are heavy polluters**
 - Tugboat fleet is old; many 30+ years
 - Vessels have large engines; 1,500-3,000 HP

- **Harborcraft emissions are largely unregulated**
 - Engine standards only apply to new ships
 - Fleet turnover is very slow

- **Harborcraft emissions endanger health**
 - Line-haul tugs travel through urban areas along Mississippi
 - Hotspots are created in inland ports like St. Louis
New, innovative strategies can reduce tugboat pollution in the short term

- EPA marine regs apply to new vessels, and will take decades to penetrate the fleet
- New tugboat vessel designs
 - Diesel electric
 - Articulated tug-bridge (ATB)
 - Controlled pitch propellers
- Operational strategies
 - Speed reduction / reduced speed zones
 - Emission control areas
 - Incentive programs
- Strategies can be implemented by vessel operators, ports, or gov’t agencies
Strategy: New tugboat designs

Diesel-Electric
- Supplemental electric motor and battery pack.
- Reduce idling, reduce peak power loads.

Articulated Tug-Barge (ATB)
- Tugboat and barge are coupled as one unit
- Streamlined profile, less friction when moving barge = up to 50% fuel savings

Controlled-Pitch Propellers
- Adjust the angle and rotation of each propeller blade
- Use optimum propeller design for a given load and speed
- Operate engine at lower power settings
Strategy: New operation procedures

- **Reduced speed zones (all pollutants)**
 - Does not require new technology or capital costs
 - Fuel savings are offset by additional operating time
 - Implemented at Los Angeles Ports for ocean-going vessels

- **Fuel Switching (PM, SO$_x$)**
 - Switch to lower-sulfur or bio diesel
 - Implementation cost depends on if vessel equipment must be upgraded
 - 2010: ultra-low-sulfur diesel mandated for nonroad, locomotive, and marine use.

- **Port Incentive Programs (all pollutants)**
 - Reduced port fees for vessels meeting environmental requirements
 - Can be cost-effective: Operators can choose cheapest upgrade path to qualify
Summary: innovative approaches to reducing emissions

- **Technological solutions:**
 - New technology research and development
 - Deployment and market acceptance of new technology
 - New engines, fuel types, aftertreatment devices

- **Operational strategies:**
 - More efficient freight facilities
 - Idle reduction
 - Supply chain improvements

- **Modeling techniques:**
 - New tools for modeling emissions and reduction strategies
 - Fuel economy and GHG modeling
Cleaner freight contributes to a greener future
Thank you for your attention

Questions? Answers!

Contact me:
- Andrew Papson
- ICF International
- apapson@icfi.com